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LIQUID CRYSTALS, 1990, VOL. 8, No. 6, 745-763 

Discontinuous orientational changes in nematics 

Effects of electric and magnetic fields 

by U. D. KIN1 
Raman Research Institute, Bangalore 560 080, India 

(Received 21 March 1990; accepted 11 July 1990) 

Theoretical studies are presented on discontinuous changes produced in 
homogeneous deformations under the competing influences of an electric field E 
applied parallel to the sample planes and a magnetic field H applied at  different 
angles in the plane containing E and n,, the initial director orientation. Orientational 
bistability can be affected by the tilt of n,, at  the boundaries, the relative magnitudes 
of H and E, the tilt angle of H and even the order in which E and H are applied 
to the sample. In particular, the bend transition can be made continuous by 
applying H parallel to  E in materials with positive diamagnetic susceptibility 
anisotropy (1, > 0). Depending upon the tilt of H and the relative strengths of H 
and E it may be possible to change (continuously or  otherwise) the nature of 
distortion in domains. A b  initio calculations show that the E induced twist tran- 
sition should be continuous in samples having lateral dimensions large compared 
with thickness. In such a sample one can envisage the possibility of removing the 
discontinuity at the Freedericksz transition by tilting n, sufficiently away from the 
homeotropic in a plane normal to E. A more complete theoretical analysis may be 
necessary to understand the discontinuous twist Freedericksz transition observed 
experimentally when the electrode gap is not large compared to the sample 
thickness. The possibility that the hysteresis width of a discontinuous Freedericksz 
transition might depend on domain formation above threshold cannot be ruled 
out. In the bend geometry non-rigid anchoring of the director at the boundaries 
is briefly dealt with to indicate that flexoelectricity might play a role in the initial 
build up of low level deformation prior to the transition when E is static. The 
flexoelectric contribution may become negligible in the presence of a sufficiently 
strong stabilizing H when the anchoring is strong enough and E is time varying. 
On the basis of the present results and previous work it may be concluded that 
variation of tilt of H may have considerable influence on  the formation of the 
modulated phase above the bend transition. 

1. Introduction 
The effects of E and H on the orientation of nematics have been well understood 

on the basis of the continuum theory [ 1-71. In particular, the study of the Freedericksz 
transition has enabled estimation of the curvature elastic constants K , ,  K,, K3 
of nematics and also made possible the development oi' a variety of field effect 
displays. 

The interaction of H with a nematic occurs via the relatively weak za.  The 
interaction of E occurs via the dielectric anisotropy E,(  = ql - E ,  where E , , ~  are the 
dielectric constants along and normal to the director, respectively) so that the induced 
polarization can considerably alter the field inside the sample [5] especially in the 
presence of a spatially varying director field. In addition, flexoelectricity [8] which is 
recognized as a material property of all varieties of nematics [9] may also assume 
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746 U. D. Kini 

importance [lo]. Still, like the H induced Freedericksz transitions, the E induced 
transitions have generally been known to be of second order. 

Recently, Frisken and Palffy-Muhoray [ 1 1,121 have reported experimental obser- 
vation of discontinuous E induced bend and twist transitions in a nematic (5CB) 
having high, positive E,. Using the analytical formulation of [14] under the rigid 
anchoring hypothesis they have theoretically interpreted the results and also 
considered other cases [I31 where the transition might be of first order. They have 
also used the bend geometry [ 121 to demonstrate E induced biaxiality in nematics. 
Interestingly, they have observed [I  I ,  121 modulated distortions under the influence of 
a stabilizing H above the bend threshold. A simple interpretation of the modulated 
structures has been given for a discontinuous transition [15]; conclusions in qualitative 
agreement with experiment have also been arrived at  rigorously [16] with the small 
perturbations approach. A thorough study of the homogeneous transition should be 
helpful in developing a more complete theory of the modulated phase. 

This may also shed light in another direction. If the bend transition is of second 
order a determination of the threshold and study of the deformation above threshold 
can enable estimation of K , ,  K ,  / K 3  and also certain other material parameters. Hence, 
a study of the homogeneous transition with a view to diminish or eliminate the 
discontinuity appears worth undertaking. It should also be interesting to find out how 
the nature of discontinuity is affected by changing the direction and magnitude of H 
and also by varying the initial director tilt at the sample planes. At this stage the 
following remarks may be made. 

The occurrence of discontinuity in the bend transition can be appreciated because 
(i) E, is large so that the director field can experience a large electric torque; (ii) ell is large 
compared to el; the director field aligning alone E is energetically favourable; (iii) E 
inside the sample is no longer parallel to the sample planes in the presence of director 
perturbations; E develops a component normal to the sample planes; the value of this 
component varies in space; (iv) the deformation occurring above the bend transition 
is large and hence splay dominant; as K, < K, ,  this is energetically favourable. 

While points (i) and (ii) hold in .twist geometry, (iii) and (iv) appear to be 
non-existent. The deformation depends upon only one elastic constant K 2 ;  it is also 
difficult to visualize physically how E inside the sample can get distorted. 

Another aspect is the formation of domain walls [4]. In many situations, involving 
Freedericksz transitions, homogeneous distortions of opposite parity become equally 
energetic at threshold; above threshold these result in the formation of domains 
separated by domain walls. While the deformation away from the walls is predomi- 
nantly homogeneous, the director distortion inside the walls defies a rigorous expla- 
nation by the continuum theory. There is no reason to exclude the formation of 
domains in a first order transition, nor can one rule out the possible effect domain 
formation might have on the width of hysteresis. It must be borne in mind that from 
the theoretical viewpoint [I  1-16] the distortion in any one domain is studied at points 
far away from the wall. 

Lastly, the importance of the finiteness of the anchoring energy must not be lost 
sight of [17-191. The rigid anchoring hypothesis is a convenient theoretical assump- 
tion which leads to close agreement with experiment in many situations. Still, under 
the action of E the combined effects of flexoelectricity and weak anchoring may be 
considerable [20]. 

In this communication an attempt is made to study some of the above aspects 
rigorously. In 52, the main differential equations governing splay-bend and twist 
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Discontinuous orientational changes 747 

deformations are set up; the case of twist is studied in some detail. The effects of 
varying the magnitude and direction of H and of varying the boundary tilt of director 
orientation form the subject of 53. Section 4 addresses itself to a brief discussion of 
the effects of weak anchoring compounded by flexoelectricity; 55 concludes the 
discussion. 

2. Mathematical model, boundary conditions 
In principle, one can start with the analytical formulation of [14]. Still, for reasons 

which become clear the problem is formulated ab initio. A nematic insulator is 
confined between two isotropic dielectric plates z = + h  and the entire sample is 
sandwiched between electrodes x = -kg/2 between which a uniform potential dif- 
ference Vis maintained. By assuming that the nematic is an insulator we are ignoring 
the presence of free charges. We also assume that the lateral dimensions of the sample 
are large compared to the sample thickness so that we essentially consider regions 
of the sample which are far from the peripheries; thus, for instance, g p 2h. Inside 
the boundary plates the electric field and the dielectric induction are both parallel 
to x. Inside the nematic, however, owing to non-uniform director orientation, 
E = (E,r, E, ,  E r )  in general with the components depending on z alone. This assump- 
tion is in keeping with the homogeneous nature of director deformation which is to 
be studied and also with the aspect ratio of the nematic sample. Maxwell’s curl 
equation (curl E = 0) [21] requires that E, and E, be constant inside the nematic while 
the divergence equation (divD = 0 where D is the dielectric induction inside the 
nematic) leads to D: = constant. At the boundary between two dielectrics the tangen- 
tial components of E and the normal component of D must be continuous [21]. 
Hence 

E, = 0; Dz = 0 (2 .1)  

inside the nematic. At this stage it is instructive to treat two separate cases; cgs units 
are used throughout. 

2 .  I .  Splay-bend dislortions 
The deformed director field 

n = (S,,O, Ce); S, = sine; C, = cos8; 0 = O(z) (2.2) 

H = (HS,,O,HC,). ( 2 . 3 )  

is assumed to lie in the xz plane under the influence of a magnetic field 

In the nematic 

D, = &,,El + 4 x 4 ;  E,] = E ~ E , ]  + E,n,n,; P, = e,n,(n,,,> + ~ ~ n ~ n ) , , ,  (2.4) 

where repeated indices are summed, E ,  is the dielectric tensor, P, the flexoelectric 
polarization [8], e l ,  e, the flexoelectric coefficients and a subscript comma denotes 
partial differentiation. The condition Dz = 0 leads to 

Ez = @(e l  + e#., - E,E , IS~C~/ (E~  + E,G) (2.5) 

showing that E develops a z component which varies with z and whose mag- 
nitude depends, in principle, on the flexoelectric constants. The bulk free energy 
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748 U. D. Kini 

density 

(2.6) 

(2.8) 

f i ( e p z z  + (afi/ae)e:,/2 + ~~H*{sin(21) - 2e)}/2 - (af2/ae)~,'/2 = 0. (2.7) 

e(z = -h) = 8,; e(z = +A) = 8,. 

W = K, (div n)2/2 f K2(n - curl n)2/2 

+ K,(n - grad I I ) ~ / ~  - DiEi/87t - xa(H - n)2/2 

= J i (@C/2  - XaH2{Cos2($ - 0)}/2 + h(e)E.:/2 + h(e)E.rQ.z; 

fi(@ = KS,2 + K 3 G ;  f,W = cl + EaCBZ; h(e) = - ~ ~ ~ , ~ / 4 n f ( @ ;  

h(e) = ( e , s h  - e3CsZE,l)/2.(~) 
leads to the equation of equilibrium 

Rigid anchoring requires that 

If, on the other hand, the surface energy density 

W, = B,[sin2{8(z = + h )  - 02}]/2 + B,[sin2{B(z = -h) - fl,}]/2, (2.9) 

where B,, & are the splay anchoring strengths at  z = + h, - h, respectively [17-191, 
the boundary conditions take the form 

(2.10) 1 (aW/aO,,) + B,{sin(28 - 28,)}/2 = 0 at z = +h; 

(aW/de.l) - B,{sin(28 - 28,)}/2 = 0 at z = -h. 

Evidently, flexoelectricity determines the bulk free energy but does not influence the 
equations of equilibrium (it acts like a surface term); still, if the director is not rigidly 
anchored at the boundaries, flexoelectricity can influence the director orientation by 
affecting the surface torques. For average anchoring strength B, elastic constant K 
and flexoelectric coefficient e ,  anchoring can be considered to be rigid if 

Bh/K 4 1; B % eE,. (2.1 1) 

Considering that K - 10-6dyne, h - 0.01 cm, B - 10-2ergcm-2 [19], e - 10-3cgs 
[lo], E,v - 0.1 cgs (40V across a gap of 0.33 cm [I l]), equation (2.11) appears to apply. 
For the moment, therefore, we use equation (2.8) and come back to equation (2.10) 
later. A point to be noted is that it is not just E, which figures in the torque equations 
(2.7); the individual ES also enter the picture in a non-trivial way due to distortion 
of E. 

2.2. Twist deformations 
If no lies in the xy plane prior to the application of E, i t  is natural to seek solutions 

for the distorted orientation as 

n = (S , ,  C,,O); 4 = 4(4. (2.12) 

As Dl = 
inside the sample. With H = (HS,,HC,,O), the free energy density 

equation (2.1) implies that E, = 0; the electric field is not distorted 

W' = K24fz/2 - (qS i  + elCi)E.;/8x - ,yaH2{cosZ(a - 4)}/2 (2.13) 

leads to the equation of equilibrium 

K2$,zz + (E,E, ' /~Z)S~C, + xaH2{sin(2a - 24)}/2 = 0 (2.14) 
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Discontinuous orienfational changes 749 

to be solved with the rigid anchoring boundary conditions 

4(z = -h )  = 4 1 ;  4(z = + h )  = 42. (2.15) 

If the anchoring is not rigid, the surface energy density [18,19] 

W’ = B,[sin2{+(z = h) - 42}]/2 + 
determines the boundary conditions to be 

K2dJ + BgIsin(24 - 242)V 

K24.z - B,{sin(24 - 241)}/2 

where B,, B, are the twist anchoring strengths. 

B,[sin2{$(z = -h) - 41}]/2 (2.16) 

Due to the absence of splay and bend, 
flexoelectricity does not appear. The electric torque is determined by E ,  ; the dielectric 
constants do not figure individually in equation (2.14). For the sake of definiteness 
consider rigid anchoring, equation (2.154, with 4I = 42 = 0 so that no is along y.  Let 
H be stabilizing with a = 0. Assuming that 4 takes the extremum 4,,, at z = 0, 
equation (2.14) can be integrated in one domain of deformation to yield +,,, as a 
function of H and E, via the well-known elliptical integral formulation [4]. The limit 
+,,, + 0 leads to the (second order transition) threshold E.rT given by 

(&,E;Th2/4nK2) - (Xah2H2/Kz) = n2/4. (2.18) 

Exact calculations show that as E, is decreased to ErT, 4,,, --* 0; theoretically, the twist 
Freedericksz transition is found to be of second order even in the presence of a 
stabilizing H. For H acting along x (a  = n/2) the sign of z a H 2  is reversed in the 
expressions; equation (2.8) will then be meaningful only for H less than the twist 
Freedericksz value (n/2h)(K2/~,)’”. As the twist transition is of second order and the 
bend transition of first order we can envisage the possibility (theoretically) that there 
might exist a cut off tilt of no (away from the homeotropic and in a plane normal to 
E) beyond which the transition becomes continuous. A rigorous treatment of this case 
would involve both orientational degrees of freedom and will be considered separately. 

Interestingly it  has been stated [ I  I ]  that E induced twist transition is discontinuous 
and values of the hysteresis width have been arrived at  theoretically (although details 
regarding calculations and experimental observations of hysteresis have not been 
presented). The theroetical conclusions arrived at ab inifio in this section are in 
contradiction with those of [l I]. Taking as correct the conclusions of this section and 
also the experimental observations of [ I  I ]  it may be worth critically examining the 
mathematical model to suggest some way of bridging the gap between theory and 
experiment. 

It  must be remembered that in the experiment [l I ]  the length scales along z, x and 
y are in the ratio 0.5 mm: 3.3 mm so that the aspect ratios of the sample can be written 
as 1 : 6.6 : 60. Although along y the lateral dimension of the sample is large compared 
to 2h, along x i t  is not; i.e. g = 6.6 (2h). Hence in a more complete description the 
boundary conditions at x = f g / 2  must also be considered in addition to the bound- 
ary conditions at z = & h. Let us note that the interface at z = * h is between two 
dielectrics while that at x = kg /2  is between a dielectric (nematic) and a conductor 
(the electrodes). I t  becomes immediately clear that a simple mathematical model 
(similar to the one developed here and in [l I]) will lead to mathematical contradic- 
tions if attempts are made to impose both sets of boundary conditions on quantities 
which are assumed to depend on z alone. To study properly the twist transition in a 
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750 U. D. Kini 

realistic situation where the electrode gap is not large compared to sample thickness 
it may be necessary to assume that all relevant quantities depend on more than one 
coordinate; it may then be possible to impose both sets of boundary conditions not 
only on the electric field components but also on the director tilt angle(s). 

Thus it may be concluded that when g >> 2h, the twist transition may be con- 
tinuous and when g - 2h the transition may become discontinuous. If this is indeed 
the case it may be possible to find some critical electrode gap g ,  such that for g > g,  
the twist transition is continuous and for g < g ,  the transition is of first order. This 
may be capable of being verified experimentally. 

3. Results for splay-bend distortions 
In addition to rigid anchoring at the sample boundaries we also assume that the 

director is symmetrically oriented at the sample planes; 8, = 8’. Calculations have 
been carried out for the parameter set given below (these give a close representation 
for 5CB [16]) 

( K , , K , , K , )  = (3.5,2.0,4.2) x 10-7dyne; E~~ = 18.8, E~ = 8.2esu; 

za = 0.8 x 10-7emu; h = 0.01 cm. (3.1) 
The qualitative nature of the discussion is unaffected by expressing results for threshold 
in terms of electric field ratios, hence the electrode gap width is not relevant. Angles 
are expressed in radians. Assuming that 8, equation (2.2), attains an extremum at the 
sample centre (8 = 8, at z = 0) one integrates equation (2.7) to get 

(3.2) 1 f5(8) = XaH’[sin2($ - 8) - sin2($ - Om)] 

+ ( E , E * E , ,  E;/4n)(sin2 0, - sin’ 0)h(0)&(8,) .  

Choosing the domain in which 8 increases from 8, to Om,  equation (3.2) is further 
integrated to yield 

(3.3) 

from which 8, can be calculated iteratively for given values of H, Ex and other 
parameters. As the integral, equation (3.3), is not well behaved at  all values of 0, and 
Om,  the transformation 

sinp = sin(8, - 8,)s inl ;  p = 8 - 8, (3.4) 
is utilized to write the integral in terms of 1. The integral can be evaluated by gaussian 
qaudrature [22]. The total free energy F can be similarly calculated from 

after using equation (3.4); the factor 2 appears in equation (3.5) due to the symmetric 
nature of 8. For a domain in which 8 decreases to 8,, one simply changes the sign of 
the integrals in equation (3.3) and (3.5). The calculation of F helps determine whether 
a particular branch of the solution is physically realistic or not. Needless to say, 
equation (3.3) and (3.5) reduce to the corresponding expressions of [ I  11 when 0, = 0 
(homeotropic initial orientation). 
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Discontinuous orientational changes 75  1 

The flexoelectric termf3(8)Ex8,, can be dropped from Wfor calculation of Fin the 
present case as it vanishes identically when integrated over the sample thickness. 
Hence, under rigid anchoring the flexoelectric term does not determine F when the 
initial orientation of the director is symmetric. On the other hand for asymmetric 
anchoring, i.e. 8, # 8,, (2.8), one can expect that flexoelectricity might determine F 
as 8 now becomes an asymmetric function of z.  In addition, this term is linear in Ex;  
this means that its contribution to Fcan even reverse sign when Ex is reversed. As the 
calculation of deformation is not straightforward for asymmetric anchoring, this case 
will be considered separately. We shall now take up some special cases of symmetric 
anchoring. 

3.1. Bend Freedericksz transition 
8, = O2 = 0. For a stabilizing (destabilizing) H along z (along x) J/ = 0 (J/  = 

x / 2 ) .  In equation (3.4) p = 8 itself. Taking the limit 8, -+ 8, = 0 in equation (3.3), 
one recovers the well-known expression 

Exc = [{(K3n2/4h2) + 6xaH2}(4xel,/~,~1)]1’2; 

6 = + 1 if xa > 0, Hs = (O,O,H);  

6 = - 1 if za < 0, HD = ( O , O , H )  

or if xa > 0, HD = (H,O,O); 

(3.6) 1 
for the (second order) Freedericksz threshold; H,, HD correspond to stabilizing and 
destabilizing magnetic fields, respectively. Interestingly, reversing the sign of xa and 
applying H along z is formally identical to the case where xa remains unchanged but H 
acts along x. 

Figure 1 depicts the variation of the order parameter 0, as a function of R = Ex/E,, 
for different parameters. One domain (9,) has been chosen in which 8 increases to 8, 
the other domain (9,) can be represented by simply changing the sign of 8. The results 
of figure 1 (a )  are in qualitative agreement with the findings of [ I  11. At R = 1,8, takes 
large values for H = 0 (curve 3). When R is decreased, 8, diminishes and becomes 
double valued in the range R ,  < R < 1; for R < R,, non-trivial values of 8, cannot 
be found, (i.e. there is no distortion) so that 1 - R, gives a measure of the transition 
width. In the region of bistability the lower deformation state has a higher F and is 
therefore represented by a dashed curve. For a material such as 5CB ( x ,  > 0) ,  a 
stabilizing H, enhances the transition width and also the extent of discontinuity while 
a destabilizing H, has the opposite effect. This is easy to grasp intuitively by noting, 
(3.6), that H, (HD) enhances (diminishes) the ‘effective bend elastic constant’ relative 
to K ,  . Results for HD are obtained by simply reversing the sign of xaH2 in equation 
(3.3) and (3.5). A sufficiently strong HD (of strength less than the magnetic bend 
threshold) can even remove the discontinuity in the transition. In [ 1 I]  the destabilizing 
action of H acting along z on a negative x. nematic is considered. It should be clear 
from figure 1 (a )  that formally identical results are obtained for a xa positive nematic 
subjected to H acting along x. An advantage of making the bend transition con- 
tinuous is that the threshold is then accurately described by equation (3.6), in 
addition, by using equations (3.3) to study the deformation above threshold it may 
be possible to estimate certain ratios of material parameters as has been done for other 
field orientations [ 5 ] .  Considering the rather different behaviour of H acting along z 
and x, one realizes that by applying H at intermediate angles it should be possible to 
influence bistability in more interesting ways; this will be seen later. 
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Figure I .  Plots of 8, (radians) versus R = E,/E,, in the bend geometry. 8, is the (extremum) 
angle of deviation away from the homeotropic at the sample centre. Ex is the component 
of E acting along the sample planes (z = f h)  and E,, equation (3.6), is the electric bend 
Freedericksz threshold for a continuous transition if one were possible. The parameter 
set, equation (3.1), is used. In the region of bistability the dashed parts of the curves 
correspond to a distortion having higher total free energy F. (a) shows the effect of H on 
the nature of the transition. A stabilizing H = (1) 720 (2) 360 emu makes the transition 
more discontinuous and also increases the width. Curve (3) is for H = 0. A destabilizing 
H along x can decrease the magnitude of the jump at the transition or even make the 
transition continuous; H = (4) 180 (5) 235 (6) 270emu. Curves identical to curves (4)-(6) 
would be obtained for a material with xa = - 0.8 x lo-’ emu if H were applied along 
z. (b)  Effect of increasing K,  while keeping other parameters as in equation (3.1). 
KI = ( I )  1.75 (2) 3.5 (3) 7.0 (4) 10.5 x IO-’dyne. (c) Effect of diminishing E , ~ ;  other 
parameters as in equation (3.1). = 1) 18.8 (2) 15.0 (3) 12.0 (4) 9.0esu. Increase of K ,  
or diminution of is detrimental to t A e occurrence of a first order bend transition. The 
effects of decreasing K,  or enhancing are similar but diagrams have not been shown. 
The distortion in the other domain can be found by simply changing the sign of 0, in the 
diagrams. The conclusions of (a) are in good agreement with those of [ I  I]. 

The effects of varying some of the other parameters on the nature of the transition 
are shown in figures 1 (b), (c). While one parameter out of the set, equation (3. I), is 
varied, the others are kept constant at their original values. It is seen that sufficient 
enhancement of K ,  relative to K3 (or diminution of ql with respect to E ~ )  can make the 
bend transition continuous. The effects of diminishing K3 or, enhancing E~ are similar 
and are not shown. 

3.2. Homeotropic initial orientation; H at angle II/ with the z axis; variation of Ex 
One value of H( = 360 emu) is chosen. H is applied at different angles II/ and 

results for II/ = 0 are given for comparison. The destabilizing field is measured 
in units of R = Ex/Ex, (II/ = 0) where the denominator is obtained from equation 
(3 .6 )  for a purely stabilizing H. A little thought makes it clear that the nature 
of distortion will depend on the sign and magnitude of II/, the kind of domain 
and also on the order in which E and H are applied. The results are summarized in 
figure 2. 

Consider the effect of H being applied first on the homeotropically aligned sample. 
This produces a monodomain deformation 9, (or g2) for II/ > 0 (or II/ < 0) with 
le,l 5 191. Now E is applied and Ex(or R )  increased from a low value. The distortion 
in the sample appreciates (figure 2 (c) or (b))  before attaining saturation. When II/ is 
sufficiently different from zero (curves 3) the enhancement of deformation is prac- 
tically continuous. When II/ is close to zero, however, the distortion shows a dis- 
continuous jump (curves 2) before attaining saturation. At the end what remains is 
the monodomain 9, (or 9*) with which we started. 
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Discontinuous orientational changes 753 

0 . 0 1 ,  I , I I 

-0 .8  

-1 .6  
0.7 0.85 1.0 0.7 0.85 1.0 

Variation of 8, as a function of R for H = 360emu applied at different angles J/ 
with the z axis. Initial alignment is homeotropic (along z). R = Ex/Ex ,  (J /  = 0) where 
the denominator is calculated from equation (3.6) for a stabilizing H = 360emu. In (c )  
and ( d )  J/ = (1) 0.0 (2) 0.2 (3) 0.4 radian. In (a)  and (b)  the sign of J/ is reversed. In (b)  
and ( c )  8, + J/ as R + 0; parts of the curves in this region have not been shown. 
(a) ,  ( c )  and (b), ( d )  represent domains Q I ,  g2 respectively. As explained in $3.2, the order 
in which H and E are applied on the sample can be important for J/ # 0. When H is 
oblique, depending upon the sign of J/,  one set of domains may get annihilated; it may 
be possible to convert irreversibly a multidomain deformation to a monodomain type. 

Figure 2. 

Suppose initially, H = 0 and Ex is increased from a low value. When the bend 
threshold is exceeded, domains gI, g2 will form. With Ex at a sufficiently elevated 
value H is applied at angle + with the z axis and R is now diminished. When R is 
sufficiently high, the deformation does not change appreciably. To fix ideas left + > 0. In domain gI the distortion decreases continuously or otherwise as R is 
diminished (figure 2(c)) as explained in the previous paragraph; when R .+ 0, 
8, + +. On the other hand, the variation of 8, in g2 is rather different. Initially, as 
R is decreased 18, I diminishes (figure 2 ( d ) ) .  When R is less than a lower limit RL, 0, 
changes sign discontinuously from a large negative value (for instance, from point P 
of figure 2 ( d ) ,  curve 2 for + = 0.2) to a positive value (point Q of figure 2(c) ,  
curve 2 for $ = 0.2). This is clearly because at  small E x ,  H dictates the orientation; 
as + is positive, 8, also must be positive. When R is further reduced to zero, 8, + +. 
Effectively, therefore, when R < R, ,  the deformation in the original domain g2 
changes discontinuously to that of the gI kind; but in the original gI domain, the 
distortion remains qualitatively the same. This suggests the possibility of applying an 
oblique H on a multidomain sample and changing the distortion to a monodomain 
kind by reducing the strength of the electric field. Needless to say, if we started with 
+ < 0, we would similarly go over from gI to g2 (the transition from T of figure 2 (a)  
to S of figure 2(b)  at + = -0.2) and obtain a deformation of the g2 type. A point 
worth noting is that such a transition would be irreversible. For R < R ,  consider the 
transition P to Q (figures 2 ( d ) ,  (c ) ) .  Subsequent to the transition, if R were increased 
above RL, 8, would only take higher positive values as in figure 2 (c);  the distortion 
would never attain negative values of 8, as in figure 2 ( d ) .  
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754 U. D. Kini 

Figure 3. Plots of Om against H for different values of the tilt angle t/j and electric field 
measured in units of R = Ex/E ,  ( H  = 0) where the denominator is calculated from 
equation (3.6) for zero magnetic field. Initial alignment is homeotropic. $ = 0 in (a) and 
(b)  (H is purely stabilizing); JI = 4 2  in (c) and ( d )  (H is along the sample planes; purely 
destabilizing); t/j = - 0.1 in (e) and (f) (H is applied at a small oblique angle with the 
z axis). Curves are drawn for R = (1) 0.9 (2) 0.95 (3) 1.0 (4) 1 .1 .  In (1) and (2) it is 
assumed that the bend threshold is exceeded and Ex subsequently diminished. It is also 
clear that while (a), (c )  and (e) represent domain 9,, (b), ( d )  and (f) represent domain 
g2. Figures 3 (a) and (b) show that a deformation discontinuously induced by E can be 
discontinuously quenched by a stabilizing H. When J/ = 4 2 ,  increase of H continuously 
enhances the distortion previously produced by Ex (figures 3 ( c )  and (d ) ) .  When 
t/j = - 0.1 (figures 3 (e) and (f)) enhancing H diminishes the deformation in 9, dis- 
continuously while the distortion in 9, changes to the .?B2 type. For R c 1 (curves 1, 
figures 3(e) and (f)) the order in which H and E are applied becomes important in 
determining how Om evolves (53.3). 

3.3. Homeotropic initial alignment; H at angle $ with z;  variation of H 
Figure 3 shows plots of 8, versus H at three values of $ = (O,n/2, - 0.1) for 

different values of R = Ex/Exc ( H  = 0) where the denominator is calculated from 
equation (3.6) for zero H. At $ = 0 (figures 3 (a), (b)),  l8,l diminishes when H is 
enhanced for a given R. When H exceeds an upper limit HL, the deformation 
disappears discontinuously in both domains; the greater the R, the higher the corre- 
sponding HL. Subsequently when H i s  diminished below HL it is reasonable to expect 
that the distortion will reappear discontinuously accompanied, perhaps, by the refor- 
mation of domains. Thus, the deformation discontinuously produced by E can be 
suppressed discontinuously by applying a sufficiently strong stabilizing H; decrease 
of H might restore the distortion discontinuously. When $ = 742, l8,l increases 
continuously with H (figures 3 (c ) ,  ( d ) ) .  

When $ = -0.1 (figures 3 ( e ) , ( f ) )  the effect of enhancing H can be rather 
different. It seems appropriate to consider the two cases R 2 1 and R < 1 separately. 
Let R = 1 .O or 1.1 (curves 3, 4). Consider the domain Q2 (figure 3 ( f  )). When H is 
increased beyond an upper limit, l8,l decreases discontinuously to a lower value; on  
further enhancement of H, 8, + $. If H i s  subsequently diminished continuously to 
zero, 8, will vary reversibly as shown by curves 3,4 .  In domain 9,, o n  the other hand, 
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Discontinuous orientational changes 755 

-1.6 0.8 0.0 0.8 1.6 ' 
Figure 4. 0, versus I+5 for different H .  Homeotropic initial alignment. Curves are drawn for 

H = (1) 120 (2) 270 (3) 330emu. R = E,r/Exc ( H  = 0) = 1.0. (a), (c) and (b), ( d )  
represent, respectively, domains gI,  g2. The distortion produced by E is appreciably 
affected by changing I(/ only if H is high enough. It  is found ($3.4) that if H is large enough 
it may be possible to change a multidomain deformation into a monodomain deformation 
by varying the tilt of H. 

8, initially decreases as H is increased (figure 3 (e ) ,  curves 3,4). When H exceeds an 
upper limit, 8, decreases in a discontinuous jump from a positive value to a negative 
value (for instance, at R = 1.0, the transition from point P, figure 3 ( e )  to point Q 
figure 3 (f )). This is clearly because H now dictates the sign of the distortion at 
the sample centre. Further enhancement of H will only take 8, closer to $ as in 
figure 3 (f). Thus enhancement of H at a small negative $ may irreversibly annihilate 
domains gl yielding a monodomain g2 deformation. In the same way if we were to 
start with $ = +0.1 we would be left with a monodomain Ql. 

When R = 0.9 (curves 1, figures 3 (e ) ,  (f)) the transition from 9, to g2 is straight- 
forward (from P,  , figure 3 (e )  to QI figure 3 (f)). However, the order of applying E 
and H may be important. Suppose H = 400 emu is applied at  $ = - 0.1 and then 
E at R = 0.9. A monodomain Q2 results with 8, z $. When H i s  decreased to zero, 
l8,l diminishes to zero along curve 1 (top of figure 3 (f)). Suppose, on the other hand 
E was first applied at R > 1 and R subsequently decreased to 0.9. Domains gI, g2 
would form with l8,l z 1.2 (figures 3 (e ) ,  (f )). Now if H is enhanced, 18, I diminishes 
in both g,, g2. When H exceeds a limit, 8, changes discontinuously in 92 to a value 
close to $ (Q, to Ql in figure 3 (f)); interestingly, at about the same H the deformation 
in gI would change to the g2 type. I t  must be remembered that if H were to be 
decreased now, 18, I would decrease to zero; 8, would never attain values correspond- 
ing to the part Q, to Q2 of curve 1 (calculation shows that the part Q3 to Q2 of 
curve 1 has a higher F than the part Q4 to QI;  still, the part Q2 to Q, represents a 
metastable state which can exist only when E is applied before H; this is why Qz to 
Q, has not been represented by a dashed line). 

3.4. Homeotropic initial alignment; H at angle $; variation of $ 
Figure 4 represents the variation of 8, with $ for one value of R = E,/E,, 

(H  = 0) = 1.0. First, E is applied and domains g , ,  Q2 are formed. H is now applied 
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756 U. D. Kini 

at I) = 7t/2 (or at I) = -n/2) and rotated in the xz plane to the opposite extreme 
I ) = -  n/2 (or I) = + x /2 ) .  Noting, from figures 3 (a), (h) that H ,  z 270 emu, three 
values of H (= 120, 270, 330emu) are chosen. When H (= 120) is well below H,,  
variation of $ has very little effect on the distortion in 9, or 9,. 

When H = 270 (curve 2) the deformation changes in a more significant way. It 
is again convenient to study 9,, g2 separately. In 9,, 8, diminishes continuously with 
I) up to a limit $,; for $ 5 I),, 8, jumps to a lower value and then decreases 
continuously with I) as IJ -, 0 (figure 4(c)). Thus, at  I) = 0, the distortion in 
9, should practically vanish. When I) diminishes further to negative values, l8,l 
increases; the deformation changes to the B2 type (figure 4(b)). At $ = - IJ,, 10ml 
increases with a jump; for I) < - I), the variation of 8, with I) again becomes con- 
tinuous. It must be noted that as the deformation represented by curve 2, figure 4 (a), 
is more energetic than that corresponding to curve 2 of figure 4(b), there is no 
possibility of 8, assuming positive values once $ has changed sign; effectively the 9, 
type distortion changes continuously to the g2 type when $ changes sign. 

Consider now how the deformation varies in g2. When I) is decreased from 4 2 ,  
l8,l diminishes continuously; as I) -, 0,8, changes discontinuously to zero so that the 
distortion in g2 gets extinguished at about the same point when the deformation 
in 9, vanishes (figure 4 ( d ) ) .  When I) changes sign, 18, I varies as already described 
(figure 4(b)). Thus, despite jumps occurring in 8, at f I),, the nature of deformation 
changes from the multidomain type to the g2 type when I) is varied from +n/2 to 
- 4 2 .  A similar reasoning shows that if one started with a multidomain distortion, 
changing I) from - 4 2  to + 4 2  would result in a monodomain 9] when $ changes 
sign. 

When H (= 330) is greater than H , ,  the change in deformation occurs in a totally 
different way. When I) is decreased from n/2,8, in 9, continuously diminishes; in Q2, 
Idm I also decreases up to a point. Then, the distortion in g2 changes discontinuously 
to the 9, type (transition from Q, curve 3, figure 4 ( d )  to P, figure 4 (c)); at this stage 
one expects that the sample becomes a monodomain 9,. When I) becomes zero, 
8, + 0; when $ changes sign so does 8, with the deformation changing to the g2 type; 
for further variation of $, 8, varies as in figure 4 (b).  For both H = 270 and 330, the 
changes in the nature of domains are irreversible; once a monodomain deformation 
is formed there is no way by which it can break up into a multidomain one as long 
as H is acting on the sample. 

3.5. Tilted initial alignment; 8, # 0; H = 0 
In this subsection results are presented on the effects of the initial director tilt on 

E induced deformation. The tilt of no with respect to z is 8, in the xz plane; rigid 
anchoring is assumed. When 8, # 0, a Freedericksz threshold no longer exists for 
orientational changes from the uniformly aligned state. Still, noting the results from 
the previous sections discontinuous changes can be expected to take place between 
states of low and high deformation. When 8, > 0 (or 8, < 0) under the action of E, 
a monodomain 9] (or g2) will result. The deformation is symmetric so that 8 assumes 
an extremum 8, at  the sample centre and 8, can be determined from equation (3.3) 

Figures 5 (a), (b )  show the variation of 8, with 8, for different values of R = E,/E,, 
( H  = 0) in 9,, g2. In general 10ml is large when 8, is sufficiently different from zero. 
The value of R determines the nature of the variation of l8,l with 8, as 8, 

to (3.5). 
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o.oJ- 

I 

- 0.9 0 0.9 0.7 0.85 1.0 

Figure 5 .  Variation of 6, as a function of 6, and R = E,/E,, ( H  = 0) in the absence of H. 
0, is the angle made by the initial uniform director orientation with z axis (in the xz 
plane). (a) and (b)  6, versus 6, for R = (1 )  1 .O (2) 0.9 (3) 0.8 (4) 0.75 in domains 9,, g2. 
When Ex is high enough 6, changes sign discontinuously as 6, changes sign. (c) and ( d )  
plots of 0, as a function of R for different 6,. In (c)  (domain 9,) 6, = (1) 0.0 (2) 0.1 
(3) 0.2; in ( d )  (domain g2) the sign of 6, is reversed. It must be remembered that when 
R is small, 6, -+ 6, ; this portion of the curves is not shown fully. The deformation 
changes continuously with E,  when the initial director tilt is sufficiently away from the 
homeotropic ($3.5). 

approaches zero. For small enough R (= 0.75, curves 4), l8,l decreases continuously 
to zero as 8, + 0. When R is slightly higher (= 0.8, curves 3) 18, I initially decreases 
continuously as 18, I is diminished; when 8, changes further, 18, I decreases discon- 
tinuously before approaching zero. For both the above R values, 8, changes sign 
continuously as 8, changes sign. When R takes still higher values (= 0.9, 1.0, curves 
2, 1) (8,l decreases continuously as 8, + 0. When 8, changes sign, however, 8, 
changes sign discontinuously. 

Figures 5 (c ) ,  ( d )  depict plots of 8, as a function of R for different 8, .  Figures 
5 (c ) ,  ( d )  represent domains 9, (g2) occurring for 8, = 0.0,0.1,0.2 (0.0, - 0.1, - 0.2). 
For 0, = 0,  the change of distortion occurs as depicted in figure 1 (a) .  When 8, is 
slightly different from zero l8,l initially decreases continuously with R; when R 
decreases further, 10ml diminishes discontinuously; when R + 0,  8, -+ 8,. The jump 
can be understood to occur when control over the distortion is exerted more by the 
substrate than by E. When 8, is sufficiently removed from zero, 8, changes 
continuously as R is varied. 

In principle it should also be possible to study orientational changes occurring 
under the competitive actions of E and H in the present case. These results will be 
presented separately because a detailed exposition falls outside the scope of this work; 
in addition it must be remembered that application of H at certain angles, even in the 
absence of E, might lead to discontinuous orientational changes (see, for instance, 

The above discussion has dealt with only symmetric boundary conditions. It is 
possible to think of two other cases. One is the asymmetric case where, equation (2.8), 
the director is anchored at different tilts at the two boundaries. This can be regarded 

~ 3 1 ) .  
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758 U. D. Kini 

as a generalization of the hybrid alignment [ lo] .  As 8 becomes asymmetric, 8 ( z  = 0)  
is not an extremum. The flexoelectric term, which is linear in E x ,  can determine F; this 
may assume importance in deciding which is the most stable among multiple 
solutions. 

The other case is that of antisymmetric director anchoring (also known as the 
reversely pretilted case; see, for instance, [24]); O2 = - 0 , .  Here again flexoelectricity 
may figure. The extremum of 8 will again not occur at  the sample centre. Other 
problems also arise because of the non-polarity of the director field which leads to 
formation of defects separating different kinds of distortions. As the computation of 
deformation is not straightforward in the above two cases, these will be presented 
separately. Intuitively, however, it can be seen that an asymmetric initial orientation 
might suppress the occurrence of discontinuous changes in 8; for instance when 
el = 0 at one surface and 8, is sufficiently large one can expect distortion to change 
continuously when R is increased from a low value. 

4. Homeotropic initial alignment; weak director anchoring at the sample planes 
This topic actually falls outside the scope of this communication as it is dif- 

ficult to present results in detail. Still, keeping in mind the experiment [12] i t  seems 
appropriate to deal briefly with this topic. So far the bend Freedericksz transition has 
been assumed to occur discontinuously from the state of uniform alignment (0 = 0)  
to the deformed state when Ex exceeds a critical value, the orientation at  the bound- 
aries is assumed not to change whatever the E x .  In the experiment the transition is 
detected optically by measuring the intensity of light transmitted by the sample placed 
between crossed polarizers. If the rigid anchoring hypothesis picture is strictly valid 
the sample must transmit light at or above threshold and not below threshold. 
Interestingly it appears [12] that as Ex is slowly increased from zero the sample starts 
transmitting more and more light. When Ex exceeds the threshold the transmitted 
intensity shows a sudden jump. This phenomenon has been interpreted [I21 by 
analysing thermal fluctuations of the director field. It is found that fluctuations build 
up more along x than along other directions, owing to the action of E;  the resultant 
biaxiality causes the initial transmittance of light. Theoretical calculations are in good 
agreement with experiment [12]. Significantly, a strong stabilizing H ( H  = 3300emu, 
2h = 0-05cm) has been used in the experiment; in addition E is an alternating field 
so that flexoelectric effects can be expected to be minimized. 

From a purely phenomenological viewpoint the gradual increase of transmittance 
with Ex can also be regarded as being caused by a slow build up of director defor- 
mation occurring without a threshold. It will now be shown that such a situation can 
indeed arise due to flexoelectric intervention when director anchoring at  the sample 
planes is not ideally rigid and E is a static field. To find out whether this has any 
bearing on the interpretation of the above experiment, we consider equations (2.7) 
and (2.10) in the limit of small deformations. Linearizing with respect to 8 and putting 

= 8, = 0 in equation (2.10) (assuming that the easy axis a t  both the plates is 
homeotropic) and including the action of a stabilizing H acting along z one obtains 

d28/dt2 + q28 = 0; t = z/h; q2 = [ ( E ~ E , E , Z / ~ ~ C E , ~ )  - (x ,H2](h2/E( , ) ;  

(4 .1)  
[de/dt + a,~, + ase](r = + 1) = o 

= [de/dt + a , ~ x  - a,el(r = - I); 

IS, = -e ,h /2K3;  as = BBh/K3; as = &h/K, .  
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Discontinuous orientational changes 759 

If we were to ignore flexoelectricity in equation (4.1) we would find a second order 
transition threshold depending on 0 8 ,  50. If we could similarly solve equations (2.7) 
and (2.10) ignoring flexoelectricity we could study the non-linear deformation above 
threshold and our results would reduce to those of 43 in the limit, equation (2.11). The 
presence of flexoelectricity makes such an exercise not very fruitful. As can be seen, 
equation (4.1), e,Ex provides a driving term which can give rise to 8 for any Ex # 0 
without threshold. In addition, if the anchoring at the sample planes is not ideally 
rigid, 8(z = + h, - h) can also change. 

There exist three possibilities for 4”. At low Ex and large H ,  4“ < 0. As Ex is 
increased q2 crosses zero and becomes positive. For 4” > 0 (which should be valid 
close to the transition) 

PI = aesinq + qcosq; /I2 = 5,sinq + qcosq. 

Expressions for q2 < 0 can be written by making q imaginary; for q = 0, one takes 
the limit q -+ 0. It is seen that when the anchoring strengths at  the two substrates are 
unequal ( 0 0  # Ze) 8 is asymmetrical. As the amplitude of 8 is proportional to E x ,  8 
changes sign with E x .  For equal anchoring strengths 8, = 0 and 8 is purely anti- 
symmetric. It is only in the small distortion limit that 6’ is determined by e3 alone; in 
principle, as seen from equations (2.7) and (2.10), e ,  should also enter the picture, 
especially when the deformation is large. As seen in $3, a deformation which increases 
slowly with Ex can change discontinuously when Ex attains higher values; a similar 
situation can also be expected here. In the present case the existence or otherwise of 
discontinuity will be determined by additional parameters Be, Be, el, e , .  

Remembering that equation (4.2) is valid only in the small deformation limit, it 
is still worth making an estimate of 8 close to the bend transition. With h = 0.025 cm, 
the anchoring is assumed to be equally strong at both surfaces; Be = Be = 0.01 cgs. 
Helfrich’s formula [16,25] can be used to derive an upper limit for e , ;  using 
equation (3.1), le,I < 4.9 x 10-4esu. Let Ex = Ex,, q x n/2; then 8, - -a ,Exc/  
0 8  - e3Exc/2Be. From experiment, for H = 3300emu, Exc = 1.25esu (125V 
between 0.33cm; equation (3.6) yields a slightly higher value of 15OV). Then 
8, z 0.03 radian which is not large. It is therefore unlikely that flexoelectricity intro- 
duces much of a correction when the anchoring is strong and also when the stabilizing 
H is large enough, as in [12]. In case the anchoring is not strong enough or H is not 
high enough, flexoelectric intervention may not be negligible. This can be settled by 
more detailed experiments and rigorous calculations. 

5. Conclusions: limitations of the present calculations 
The continuum theory is used to study the effect of E acting parallel to the 

boundaries of a (positive x.)  nematic sample in the presence of an additional H. 
Homogeneous deformation is studied at points well removed from domain walls 
under the rigid anchoring hypothesis ignoring free charges; effects of weak anchoring 
and flexoelectricity are briefly discussed. Results for bend geometry are in qualitative 
agreement with those of [ I  1,121 with the bend transition turning out to be discon- 
tinuous. The twist transition, however, is found to be continuous contrary to the 
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experimental findings and theoretical predictions of [l 11. In the present mathematical 
framework this seems to be caused by the orientation not distorting E in twist 
geometry. The calculations, which are set out ab initio to facilitate checking, seem to 
be correct and therefore point towards the need to bridge the gap between the present 
theory and experiment. It is suggested that while the twist transition is continuous in 
a sample having electrode gap much greater than thickness, the transition may turn 
discontinuous when the electrode gap is not large. The present mathematical model 
may be inadequate to understand this as all quantities may have to be taken to depend 
on more than one coordinate; such an effort lies outside the scope of this work. From 
a purely theoretical viewpoint one can envisage the possibility that when the lateral 
dimensions of the sample are large with respect to the thickness it may be possible to 
make the Freedericksz transition continuous by tilting the initial director orientation 
sufficiently away from the homeotropic in a plane normal to E. 

Even the bend transition may become continuous under the additional action of 
H (of strength less than the magnetic bend threshold) applied along E. This may be 
of help in the determination of some material parameters or their ratios. Increasing 
K ,  / K ,  or diminishing E , , / E ,  can reduce (and even remove) the discontinuity at the bend 
transition. The former case may be relevant to discotic nematics for which divergence 
of that elastic ratio has been predicted [26] over certain temperature ranges. The 
second case may be of interest for nematics which exhibit strong dielectric relaxation; 
in such cases it may be possible to influence the discontinuity at  the bend transition 
by changing the frequency of the applied electric field. 

It is not possible to rule out the formation of domains containing homogeneous 
distortions of opposite parity above the bend threshold. A sufficiently strong H 
applied normal to the plates may be able to quench the deformation in all domains 
discontinuously; decreasing H may lead to the reformation of domains. 

When H is applied obliquely at some angle $ with no, its effect can be different on 
different domains. In this case there is no electric threshold; one can only think of 
discontinuous changes that might occur between states of less and more deformation. 
It is found that such jumps occur whenever the major influence determining the nature 
of the distortion changes from H to E or vice versa. Decreasing Ex at constant H or 
increasing H at constant Ex may lead to a multidomain deformation changing 
irreversibly into a monodomain distortion; these changes may be continuous 
or discontinuous depending upon the relative strengths of H and E and also the tilt 
of H. 

Discontinuities also occur when no is tilted away from the homeotropic towards 
E. In this case again an electric threshold does not exist and the deformation jumps 
from one state to another. These jumps can be interpreted to occur when the major 
control over the distortion changes from E to the sample planes (i.e. elastic torques) 
or vice versa. The discontinuity can be softened and even removed by tilting no 
sufficiently towards E. Calculations for these cases have been presented in the absence 
of H. 

The rather general theoretical formulation allows one to conclude that it may not 
be realistic to treat the case of finite anchoring energy without including flexoelectricity. 
This is because flexoelectricity can cause a deformation to develop continuously in the 
bend geometry even when Ex is below the bend threshold. As this has an unmistakable 
bearing on experiments related to E induced biaxiality, the case of finite anchoring 
energy is treated briefly in the limit of low distortions. The conclusion of this 
preliminary investigation is that as long as anchoring is strong enough and the 
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Discontinuous orientational changes 76 1 

magnitude of the stabilizing H large enough the flexoelectric intervention may not be 
considerable; even when E is static. These conditions appear to be satisfied in [I21 as 
the investigators have utilized an alternating electric field, so that flexoelectric effects 
are minimized. The flexoelectric distortion may be asymmetrical or even anti- 
symmetric. More detailed investigations, theoretical and experimental, may be 
necessary to assess quantitatively the range of anchoring strength, H and Ex,  over 
which flexoelectricity becomes important. 

One of the limitations of the present effort lies in studying the problem from a 
purely static viewpoint. It must be remembered that changes in director orientation 
are generally accompanied by transient flow. It should be interesting to find out what 
effect such flow has on the occurrence of discontinuity. This assumes some importance 
because hydrodynamic flow can couple with orientation via viscous torques. 

At several points in this work (see, for instance, figures 2 to 4) conclusions 
have been drawn regarding the nature of distortions in different domains. The 
continuum theory only predicts the possibility of domain formation without being 
able to deduce exactly the director orientation at the domain walls. It is also not 
straightforward to find out how many domains can actually form in the sample. A 
crude guess would be that the domain number must be even and related in some way 
to the aspect ratio of the sample (in the present case, g/2h). This is a quantity which 
does not figure in the calculations but which may be of importance in an experiment 
(in [ I  I ,  121, g/2h rz 7). 

It has been shown that under certain conditions the nature of deformation in one 
domain (say 9,) may change over to another kind (g2). It has been tacitly assumed 
that when this happens the wall separating 9,, g2 dissolves leaving the monodomain 
9*. This is only an assumption, not a prediction. In addition, only one degree of 
orientational freedom has been considered (splay-bend deformations). The change in 
the nature of distortion in a given domain is accompanied by a large jump in 8,. Such 
a change, accompanied by a correspondingly high viscous torque, may result in the 
orientation changing along lines not predicted in this work; for instance, the director 
may buckle out of the splay-bend plane via a twist leading to the formation of a new 
set of domains. These points are certainly worth an experimental check. 

An aspect not treated in this work is the occurrence of the modulated phase above 
the bend transition in the presence of a strong stabilizing H. The present work, dealing 
with homogeneous deformations, cannot shed much light on this subject except to 
indicate the possibility that the formation of the modulated phase may be facilitated 
by the increasing discontinuity at the bend transition caused by increasing the strength 
of the stabilizing H. Though simplified discussions are available in the literature 
[15,16] there is really no substitute for a rigorous calculation to understand the 
formation of modulations; this is being attempted. Still, from previous experience, 
certain possibilities can be hinted at. It has been known experimentally [27] as well as 
theoretically [28,29] that the stripe phase which sets in above the magnetic bend 
threshold close to the nematic-smectic A transition point can be suppressed by 
changing the tilt of H by a small angle. It would be interesting to consider two 
situations for the present case of the modulated phase [11, 121. In the first, the 
modulated phase is produced above the discontinuous bend transition. Keeping Ex 
and H constant, H is rotated slowly away from its original direction (normal to the 
plates). The questions to be answered are: (i) How does the wave vector of the stripes 
change as H is rotated? (ii) Does the modulated phase disappear (continuously or 
otherwise) when H is rotated beyond a certain angle? 
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In the second experiment, H is applied to the uniformly aligned (homeotropic) 
sample at a small angle to the sample planes with E = 0; now Ex is increased. The 
questions that can be raised are: (i) Does the homogeneous deformation change 
discontinuously from a low state to a high state? (ii) Does the modulated phase occur 
above this jump? (iii) Is there a critical angle of tilt of H beyond which the modulations 
do not occur a t  all? 

Lastly it must be remembered that all calculations have been carried out by taking 
one domain at a time. This must be noted particularly in connection with the diagrams 
depicting hysteresis (figure 1, also [l I]). Domains can be expected to form when 
deformation occurs above threshold. In an experiment when the voltage is subse- 
quently diminished the decrease in distortion that is observed actually corresponds to 
a change in the total deformation in the sample including domains and walls. When 
the field is sufficiently reduced the distortion gets completely quenched and this 
enables an estimate of the width of the transition. A relevant question that arises is 
whether domain formation above threshold has any influence on the hysteresis width. 
Put in a different way the question reads: If the deformation above threshold can be 
made monodomain by some means and if the field is now reduced, will the same 
hysteresis width be observed as in the original experiment when multiple domain 
formation was allowed? 

Let us note that there exists an experimental technique (see, for instance, [30]) for 
ensuring monodomain formation above a Freedericksz threshold. It is indicated later 
that an adaptation of such a method may be useful in providing an empirical answer 
to the above question. 

In the bend geometry, starting with n,, along z and E along x ,  the deformation 
threshold E,, is noted. Now Ex is diminished and the point of extinction ( E d )  of the 
distortion is determined. Then BE = E, - Ed is the transition width with multiple 
domain formation. 

In the second experiment, with n,, along z, H is applied in the xz  plane at some 
angle (say 30') with the z axis to produce a monodomain deformation. With H still 
acting on the sample, Ex is slowly enhanced to a value > E,; the monodomain 
distortion is now sustained by the combined actions of H and E. Holding Ex constant, 
H is now slowly diminished to zero leaving the monodomain deformation controlled 
solely by Ex;  in a way we have bypassed the threshold E,, by temporary use of a 
suitable H. If Ex is now diminished and the point of extinction E,I determined, we can 
estimate AE' = E,, - E,I, the transition width when the deformation above threshold 
is monodomain. Whether AE and AE' are equal or not (within experimental error) 
will help answer the question whether the formation of multiple domains above 
threshold has any effect on the hysteresis width. Needless to say, a similar technique 
can be used in the twist geometry except that now n,, is along y and H is temporarily 
applied in the xy plane. 

The author thanks a referee for useful comments which helped improved an earlier 
version of the manuscript. 
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